| [³o½g¤å³¹³Ì«á¥Ñ¥xÆWµµ´³½º¦b 2006/01/07 11:28pm ²Ä 1 ¦¸½s¿è]
¹p¹F´¦¥Ü½¹½º¸¦æ¸ô½u¶ø¯¦
2005-04-12 08:16:52 ¡@¡@¡@¡@
¡@¡@^°ê¬ì¾Ç®a§Q¥Î¹p¹F³]³Æµo²{¡A½¹½º±Ä¥Î¤£¦P¸¦æ¸ô½u¨Ó¹F¨ì´M§ä¹ª«©Î®a¶éªº¥Øªº¡C³o¤@µo²{¬°¥Íª«¾Ç®a´M§ä¬Ãµ}ºØÃþ½¹½ºªº´Ï®§¦a´£¨Ñ¤F·s¤èªk¡C
¡@¡@^°êù¯S«¢©i´µ®õ¼w¬ã¨s©Ò²ú»ô•§¢¯Sµ¥¤H¡A¦b30¥u½¹½ºªºI³¡¦w¸Ë¤F«¶q¶È¦³12²@§Jªº·L«¬µL½u¹qÀ³µª¾¹¡C¦bµL½u¹qÀ³µª¾¹¤£¼vÅT½¹½º¸¦æªº±¡ªp¤U¡A¬ã¨s¤Hû±N³o¨Ç½¹½º©ñ¸¨ì¤@¶ô¥Ñ¹p¹F±½´yªº¤g¦a¡CÀ³µª¾¹¦¬¨ì¹p¹Fµo¥Xªº«H¸¹¡A·|µo¥X¤@ºØ¯S®íªºÀ³µª«H¸¹¡A±q¦Ó¨Ï¬ã¨s¤Hû¯à°÷°lÂܽ¹½ºªº¸¦æ¸ô½u¡C³oºØ§Þ³Nì²z»P¯èªÅ·~¨¾¤î¸¾÷¬Û¼²ªº¦w¥þ¨t²Î¬Û¦ü¡C
¡@¡@°lÂܵ²ªGµo²{¡A¹êÅç¬ã¨sªº ³Âßæ½º©M¤Õ³¶ß潺¨âºØ½¹½º³£¦³¨âºØºIµM¤£¦Pªº¸¦æ¸ô½u¼Ò¦¡¡C¤@ºØ¬Oª½½u¸ô½u¡A½¹½º¥H¶W¹L¨C¬í3¦Ìªº³t«×¸¹L¦a±¡F¥t¤@ºØ¬OÀô§Î¸ô½u¡A½¹½º±Ä¥Î³oºØ¸¦æ¼Ò¦¡®É¡A³q±`³t«×¸ûºC¡A¸¦æ¶ZÂ÷¤]¸û»·¡C¦¹¥~¡A½¹½ºÁÙ¯à¹ï¶Z¦Û¤v200¦Ì¥~ªº¨Æª«§@¥X¦^À³¡C¨Ò¦p¡A½¹½º¯à¹îı¨ì»·³BªºªáÂO¡A¦Ó§ïÅܦۤvªº¸¦æ¸ô½u¡C³o¤@¦¨ªGµoªí¦b¡mÛ´°^°ê¬Ó®a¾Ç·|¾Ç³ø¡n¤W¡C
¡@¡@§¢¯Sµ¥¤H»{¬°¡A½¹½ºªºÀô§Î¸ô½u¥i¯à¬O¤@ºØ·j´M¦æ¬°¡A¤ñ¦p´M§äªá»e¡A©Î¬O¥i¥H¥V¯vªº°®Àê¾ð¤ìµõÁ_¡C¦Ó·í½¹½º·QnÂ÷¶}¬YӰϰì©Î°kÂ÷¤Ñ¼ÄŧÀ»®É¡A³q±`·|±Ä¥Îª½½u¸¦æ¸ô½u¡C
¡@¡@¥Ø«e¡A§¢¯S¬ã¨s¤p²Õ·Ç³Æ¹ï»È©³°\¯¾ß潺©M¥ìªÚ®Ô½¹½º¶i¦æ¦P¼Ëªº¹êÅç¡C³o¨âºØ½¹½º³£Äݤ_Ãx¦M¬Ãµ}ª«ºØ¡A¥Íª«¾Ç®a§Æ±æ¯à§Q¥Î¹p¹F§Þ³N¹ï¥¦Ìªº¥Í¬¡²ß©Ê¶i¦æ¶i¤@¨B¬ã¨s¡A¬°¨âºØ¬Ãµ}½¹½ºªº¥Í¬¡Ác´Þ´£¨ÑÀ°§U¡C
ì½×¤åºKn»P°Ñ¦Ò®Ñ¥Ø¦p¤U¡G Tracking butterfly flight paths across the landscape with harmonic radar
E.T. Cant A1, A.D. Smith A1, D.R. Reynolds A2, J.L. Osborne A1
A1 Plant and Invertebrate Ecology Division, Rothamsted Research, Hertfordshire AL5 2JQ, UK A2 Plant, Animal and Human Health Group, Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, UK
Abstract:
For the first time, the flight paths of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Until now, butterfly mobility has been predominantly studied using visual observations and mark¡Vrecapture experiments. Attachment of a light-weight radar transponder to the butterfly's thorax did not significantly affect behaviour or mobility. Tracks were analysed for straightness, duration, displacement, ground speed, foraging and the influence of linear landscape features on flight direction. Two main styles of track were identified: (A) fast linear flight and (B) slower nonlinear flights involving a period of foraging and/or looped sections of flight. These loops potentially perform an orientation function, and were often associated with areas of forage. In the absence of forage, linear features did not provide a guiding effect on flight direction, and only dense treelines were perceived as barriers. The results provide tentative support for non-random dispersal and a perceptual range of 100¡V200m for these species. This study has demonstrated a methodology of significant value for future investigation of butterfly mobility and dispersal.
--------------------------------------------------------------------------------
Keywords:
butterfly flight, harmonic radar, linear landscape features, Aglais urticae, Inachis io
--------------------------------------------------------------------------------
References:
Asher, J., Warren, M., Fox, R., Harding, P., Jeffcoate, G. & Jeffcoate, S. 2001 The millennium atlas of butterflies in Britain and Ireland. Oxford: Oxford University Press.
Baudry, J. & Burel, F. 1997 Agricultural landscape dynamics: implications for species movements. Proc. 6th annual IALE(UK) conference. Ulster, Coleraine (eds. Cooper, A. & Power, J.), pp. 3¡V10, Lymm: IALE(UK)
Bell, W.J. 1991 Searching behaviour: the behavioural ecology of finding resources. London: Chapman & Hall.
Brommer, J.E. & Fred, M.S. 1999 Movement of the Apollo butterfly Parnassius apollo related to host plant and nectar plant patches. Ecol. Entomol. 24, 125¡V131.
Capaldi, E.A. et al. 2000 Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403, 537¡V540.
Chapman, J.W., Reynolds, D.R. & Smith, A.D. 2003 Vertical-looking radar: a new tool for monitoring high-altitude insect migration. Bioscience 53, 503¡V511.
Conradt, L., Bodsworth, E.J., Roper, T.J. & Thomas, C.D. 2000 Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models. Proc. R. Soc. B 267, 1505¡V1510(doi:10.1098/rspb.2003.1170).
Conradt, L., Roper, T.J. & Thomas, C.D. 2001 Dispersal behaviour of individuals in metapopulations of two British butterflies. OIKOS 95, 416¡V424.
Dover, J.W. & Fry, G.L.A. 2001 Experimental simulation of some visual and physical components of a hedge and the effects on butterfly behaviour in an agricultural landscape. Entomol. Exp. Appl. 100, 221¡V233.
Haddad, N.M. 1999 Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol. Appl. 9, 612¡V622.
Haddad, N.M. 1999 Corridor use predicted from behaviours at habitat boundaries. Am. Nat. 153, 215¡V227.
Haughton, A.J. et al. 2003 Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Phil. Trans. R. Soc. B 358, 1863¡V1877doi:10.1098/rstb.2003.1403.
Hill, J.K., Thomas, C.D. & Lewis, O.T. 1996 Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for meta population structure. J. Anim. Ecol. 65, 725¡V735.
Kennedy, J.S. 1986 Migration, behavioral and ecological. Contributions in Marine Science Migration: mechanisms and adaptive significance (ed. Rankin, M.A.), 27 (Suppl.). pp. 5¡V26
Osborne, J.L., Clark, S.J., Morris, R.J., Williams, I.H., Riley, J.R., Smith, A.D., Reynolds, D.R. & Edwards, A.S. 1999 A landscape scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519¡V533.
Osborne, J.L., Loxdale, H.D. & Woiwod, I.P. 2002 Monitoring insect dispersal: methods and approaches. Dispersal ecology (eds. Bullock, J.M. Kenward, R.E. & Hails, R.S.), pp. 24¡V49, Oxford: Blackwell Publishing
Poppy, G.M. & Williams, I.H. 1999 A bee flight room designed for studies of bee foraging behaviour. J. Apic. Res. 38, 177¡V189.
Riley, J. & Osborne, J.L. 2001 Flight trajectories of foraging insects: observations using harmonic radar. Insect movement: mechanism and consequences (eds. Woiwod, I.P. Reynolds, D.R. & Thomas, C.D.), pp. 127¡V157, Wallingford: CAB International
Riley, J.R. & Smith, A.D. 2002 Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput. Electron. Agric. 35, 151¡V169.
Riley, J.R., Smith, A.D., Reynolds, D.R., Edwards, A.S., Osborne, J.L., Williams, I.H., Carreck, N.L. & Poppy, G.M. 1996 Tracking bees with harmonic radar. Nature 379, 27¡V30.
Riley, J.R., Valeur, P., Smith, A.D., Reynolds, G.M., Poppy, G.M. & Löfstedt, C. 1998 Harmonic radar as a means of tracking the pheromone-finding and pheromone-following flight in male moths. J. Insect Behav. 11, 287¡V296.
Riley, J.R., Greggers, U., Smith, A.D., Stach, S., Reynolds, D.R., Stollhoff, N., Brandt, R., Schaupp, F. & Menzel, R. 2003 The automatic pilot of honeybees. Proc. R. Soc. B 270, 2421¡V2424(doi:10.1098/rspb.2003.2542.).
Roland, J., McKinnon, G., Backhouse, C. & Taylor, P.D. 1996 Even smaller radar tags on insects. Nature 381, 120.
Schneider, C. 2003 The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecol. Entomol. 28, 252¡V256.
Shreeve, T.G. 1995 Butterfly mobility. Ecology and conservation of butterflies (ed. A.S. Pullin), pp. 37¡V45, London: Chapman & Hall
Sutcliffe, O.L., Bakkestuen, V., Fry, G. & Stabbetorp, O.E. 2003 Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc. Urban Plan. 63, 15¡V31.
Taylor, P.D. 1997 Empirical explorations of landscape connectivity. Proc. 6th annual IALE(UK) conference. Ulster, Coleraine (eds. Cooper, A. & Power, J.), pp. 11¡V18, Lymm: IALE(UK)
Wallin, H. & Ekbom, B.S. 1988 Movements of carabid beetles (Coleoptera: Carabidae) inhabiting cereal fields: a field tracing study. Oecologia 77, 39¡V43.
Wang, R., Wang, Y., Chen, J., Lei, G. & Xu, R. 2004 Contrasting movement patterns in two species of chequerspot butterflies, Euphydryas aurinia and Melitaea phoebe, in the same patch network. Ecol. Entomol. 29, 367¡V374.
| | |
|
|
|